Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(45): 31500-31513, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37962545

RESUMEN

Actinide-actinide bonding poses a challenge for both experimental and theoretical chemists because of both the scarcity of experimental data and the exotic nature of actinide bonding due to the involvement and mixing of actinide 7s-, 6p-, 6d-, and particularly 5f-orbitals. Only a few experimental examples of An-An bonding have been reported so far. Here, we perform a methodological study of actinide-actinide bonding on experimentally known Th2@C80 and U2@C80 systems. We compared selected GGA, meta-GGA, hybrid-GGA and range-separated hybrid-GGA functionals with the results obtained using a multireference CASPT2 method, which we consider as a reference point. We show that functionals such as BP86, PBE or TPSS perform well for predicting geometries, while range-separated hybrids are superior in the description of the chemical bonding. None of the tested functionals were deemed reliable regarding the correct electronic spin ground state. Based on the results of this methodological study, we re-evaluate selected previously studied diactinide fullerene systems using more reliable protocol.

2.
Phys Chem Chem Phys ; 25(20): 14245-14256, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37171279

RESUMEN

Endohedral fullerenes with a dipolar molecule enclosed in the fullerene cage have great potential in molecular electronics, such as diodes, switches, or molecular memristors. Here, we study a series of model systems based on MX@D5h(1)-C70 (M = a metal or hydrogen, X = a halogen or a chalcogen) endohedral fullerenes to identify potential molecular memristors and to derive a general formula for rapid identification of potential memristors among analogous MX@Cn systems. To obtain sufficiently accurate results for switching barriers and encapsulation energies, we perform a benchmark of ten DFT functionals against ab initio SCS-MP2 and DLPNO-CCSD(T) methods at the complete basis set limit. The whole series is then investigated using the PBE0 functional which was found to be the most efficient vs. the ab initio methods. Nine of the 34 MX@C70 molecules studied are predicted to have suitable switching barriers to be considered as potential candidates for molecular switches and memristors. We have identified several structure-property relationships for the switching barrier and response of the systems to the electric field, in particular the dependence of the switching barrier on the available space for M-X switching and faster response of the system to the electric field with a larger dipole moment of MX and MX@C70.

3.
ChemSusChem ; 15(18): e202200840, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35864078

RESUMEN

Hydrogen carriers, such as hydrazine (N2 H4 ), may facilitate long duration energy storage, a vital component for resilient grids by enabling more renewable energy generation. Lanthanide coordination chemistry with N2 H4 as well as efforts to displace N2 H4 from the metal coordination sphere to develop an efficient catalytic production cycle were detailed. Modeling the equilibrium of different ligand coordination, it was predicted that strong sigma donor molecules would be required to displace N2 H4 . Monitoring competition experiments with nuclear magnetic resonance confirmed that trimethyl phosphine oxide, dimethylformamide, and dimethyl sulfoxide displaced N2 H4 in large or small lanthanide complexes.

4.
PLoS One ; 16(10): e0245103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34613965

RESUMEN

We collected a multi-centric retrospective dataset of patients (N = 213) who were admitted to ten hospitals in Czech Republic and tested positive for SARS-CoV-2 during the early phases of the pandemic in March-October 2020. The dataset contains baseline patient characteristics, breathing support required, pharmacological treatment received and multiple markers on daily resolution. Patients in the dataset were treated with hydroxychloroquine (N = 108), azithromycin (N = 72), favipiravir (N = 9), convalescent plasma (N = 7), dexamethasone (N = 4) and remdesivir (N = 3), often in combination. To explore association between treatments and patient outcomes we performed multiverse analysis, observing how the conclusions change between defensible choices of statistical model, predictors included in the model and other analytical degrees of freedom. Weak evidence to constrain the potential efficacy of azithromycin and favipiravir can be extracted from the data. Additionally, we performed external validation of several proposed prognostic models for Covid-19 severity showing that they mostly perform unsatisfactorily on our dataset.


Asunto(s)
COVID-19/epidemiología , Progresión de la Enfermedad , Hospitalización , Adulto , Anciano , COVID-19/patología , COVID-19/terapia , República Checa/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Tratamiento Farmacológico de COVID-19
5.
Pediatr Nephrol ; 36(11): 3717-3723, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34008126

RESUMEN

INTRODUCTION: Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease. Kidney cysts form over the course of the disease and kidney function slowly declines, usually leading to kidney failure in middle to late adulthood. However, some symptoms, such as hypertension or proteinuria, can be present at an earlier age. In this study, we aimed to quantify early complications in children over time. METHODS: All 69 children with ADPKD from our pediatric nephrology center who met inclusion criteria (follow-up ≥ 1 year and ≥ 2 recorded visits) were studied. Analysis of changes in kidney size, cyst count, estimated glomerular filtration rate (eGFR), urinary protein excretion, and blood pressure was performed. RESULTS: The median time of follow-up was 6.3 years (range 8.4-14.8). Over the follow-up, kidneys grew from 109 to 115% of expected length (p < 0.0001), number of cysts increased at a rate of 0.8 cyst/kidney/year, and the prevalence of hypertension increased significantly from 20 to 38% (p < 0.015). The eGFR and absolute urinary protein excretion remained stable. CONCLUSIONS: This study shows that children with ADPKD suffer from increasing prevalence of hypertension during the course of the disease parallel to the increasing number of kidney cysts and size despite normal and stable kidney function and proteinuria. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hipertensión , Riñón Poliquístico Autosómico Dominante , Niño , Estudios de Seguimiento , Humanos , Hipertensión/epidemiología , Riñón Poliquístico Autosómico Dominante/epidemiología , Prevalencia
7.
Dalton Trans ; 49(39): 13726-13736, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-32996963

RESUMEN

Al(iii) complexes are extensively studied as [18F]fluoride carriers in positron emission tomography. However, our limited knowledge on their thermodynamic and kinetic properties has hindered efforts to easily prepare radiochemically pure compounds while simultaneously reducing the overall labeling time. Thus, to improve our understanding of fluoride binding to coordinatively unsaturated Al(iii) complexes, we investigated the ternary system Al(iii)-H3NTA-F- (H3NTA = nitrilo-triacetic acid) by NMR, potentiometry and X-ray diffraction. Our results show that the [Al(NTA)] complex binds two water molecules, which are replaced by fluorides. Individual species and isomers show separate 19F NMR signals and different stability constants. The two available positions on the [Al(NTA)] complex feature significantly different properties in terms of basicity of the coordinated water molecules and preferential binding of fluoride anions. Fluorides are effectively bound in weakly acidic or neutral solutions, whereas hydroxido species are preferentially formed in alkaline solutions. Our experimental observations were rationalized by theoretical calculations: predictions of the energy ordering of complexes and isomers, interpretation of 19F NMR chemical shifts, and natural bonding orbital analysis. Radiolabeling of [Al(NTA)] with [18F]fluoride gave low yields that confirmed a high affinity of the complex for hydroxide anions.

8.
Inorg Chem ; 59(17): 12608-12615, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845126

RESUMEN

Actinide-actinide bonds are rare. Only a few experimental systems with An-An bonds have been described so far. Recent experimental characterization of the U2@Ih(7)-C80 (J. Am. Chem. Soc. 2018, 140, 3907) system with one-electron two-center (OETC) U-U bonds as was predicted by some of us (Phys. Chem. Chem. Phys. 2015, 17, 24182) encourages the search for more examples of actinide-actinide bonding in fullerene cages. Here, we investigate actinide-actinide bonding in An2@D5h(1)-C70, An2@Ih(7)-C80, and An2@D5h(1)-C90 (An = Ac-Cm) endohedral metallofullerenes (EMFs). Using different methods of the chemical bonding analysis, we show that most of the studied An2@C70 and An2@C80 systems feature one or more one-electron two-center actinide-actinide bonds. Unique bonding patterns are revealed in plutonium EMFs. The Pu2@Ih(7)-C80 features two OETC Pu-Pu π bonds without any evidence of a corresponding σ bond. In the Pu2@D5h(1)-C90 with rPu-Pu = 5.9 Å, theory predicts the longest metal-metal bond ever described. Predicted systems are thermodynamically stable and should be, in principle, experimentally accessible, though radioactivity of studied metals may be a serious obstacle.

9.
J Am Chem Soc ; 141(50): 19644-19654, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31744293

RESUMEN

Employing multiscale in silico modeling, we propose switching molecular diodes on the basis of endohedral fullerenes (fullerene switching diode, FSD), encapsulated with polar molecules of general type MX (M: metal, X: nonmetal) to be used for data storage and processing. Here, we demonstrate for MX@C70 systems that the relative orientation of enclosed MX with respect to a set of electrodes connected to the system can be controlled by application of oriented external electric field(s). We suggest systems with two- and four-terminal electrodes, in which the source and drain electrodes help the current to pass through the device and help the switching between the conductive states of FSD via applied voltage. The gate electrodes then assist the switching by effectively lowering the energy barrier between local minima via stabilizing the transition state of switching process if the applied voltage between the source and drain is insufficient to switch the MX inside the fullerene. Using nonequilibrium Green's function combined with density functional theory (DFT-NEGF) computations, we further show that conductivity of the studied MX@C70 systems depends on the relative orientation of MX inside the cage with respect to the electrodes. Therefore, the orientation of the MX inside C70 can be both enforced ("written") and retrieved ("read") by applied voltage. The studied systems thus behave like voltage-sensitive switching molecular diodes, which is reminiscent of a molecular memristor.

10.
Chemistry ; 24(17): 4245-4249, 2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29431245

RESUMEN

A recent study (Sci. Adv. 2017, 3, e1602833) has shown that FH⋅⋅⋅OH2 hydrogen bond in a HF⋅H2 O pair substantially shortens, and the H-F bond elongates upon encapsulation of the cluster in C70 fullerene. This has been attributed to compression of the HF⋅H2 O pair inside the cavity of C70 . Herein, we present theoretical evidence that the effect is not caused by a mere compression of the H2 O⋅HF pair, but it is related to a strong lone-pair-π (LP-π) bonding with the fullerene cage. To support this argument, a systematic electronic structure study of selected small molecules (HF, H2 O, and NH3 ) and their pairs enclosed in fullerene cages (C60 , C70 , and C90 ) has been performed. Bonding analysis revealed unique LP-πcage interactions with a charge-depletion character in the bonding region, unlike usual LP-π bonds. The LP-πcage interactions were found to be responsible for elongation of the H-F bond. Thus, the HF appears to be more acidic inside the cage. The shortening of the FH⋅⋅⋅OH2 contact in (HF⋅H2 O)@C70 originates from an increased acidity of the HF inside the fullerenes. Such trends were also observed in other studied systems.

11.
Springerplus ; 2(1): 47, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23519192

RESUMEN

Clostridium tyrobutyricum ATCC 25755 is an acidogenic bacterium capable of utilizing xylose for the fermentation production of butyrate. Hot water extraction of hardwood lingocellulose is an efficient method of producing xylose where autohydrolysis of xylan is catalysed by acetate originating from acetyl groups present in hemicellulose. The presence of acetic acid in the hydrolysate might have a severe impact on the subsequent fermentations. In this study the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 26.3 g/L acetate equivalents were studied. Analysis of xylose batch fermentations found that even in the presence of high levels of acetate, acetate adapted strains had similar fermentation kinetics as the parental strain cultivated without acetate. The parental strain exposed to acetate at inhibitory conditions demonstrated a pronounced lag phase (over 100 hours) in growth and butyrate production as compared to the adapted strain (25 hour lag) or non-inhibited controls (0 lag). Additional insight into the metabolic pathway of xylose consumption was gained by determining the specific activity of the acetate kinase (AK) enzyme in adapted versus control batches. AK activity was reduced by 63% in the presence of inhibitory levels of acetate, whether or not the culture had been adapted.

12.
Oecologia ; 159(4): 777-88, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19148684

RESUMEN

The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce nutritional stress.


Asunto(s)
Acer/metabolismo , Adaptación Biológica/fisiología , Mariposas Nocturnas/fisiología , Hojas de la Planta/química , Quercus/metabolismo , Taninos/análisis , Acer/fisiología , Análisis de Varianza , Animales , Sistema Digestivo/metabolismo , Larva/metabolismo , Larva/fisiología , Mariposas Nocturnas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Fenoles/análisis , Fenoles/metabolismo , Quercus/fisiología , Especificidad de la Especie , Taninos/metabolismo
13.
J Insect Physiol ; 55(4): 297-304, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19111746

RESUMEN

The high levels of tannins in many tree leaves are believed to cause decreased insect performance, but few controlled studies have been done. This study tested the hypothesis that higher foliar tannin levels produce higher concentrations of semiquinone radicals (from tannin oxidation) in caterpillar midguts, and that elevated levels of radicals are associated with increased oxidative stress in midgut tissues and decreased larval performance. The tannin-free leaves of hybrid poplar (Populus tremulaxP. alba) were treated with hydrolyzable tannins, producing concentrations of 0%, 7.5% or 15% dry weight, and fed to Lymantria dispar caterpillars. As expected, larvae that ingested control leaves contained no measurable semiquinone radicals in the midgut, those that ingested 7.5% hydrolyzable tannin contained low levels of semiquinone radicals, and those that ingested 15% tannin contained greatly increased levels of semiquinone radicals. Ingested hydrolyzable tannins were also partially hydrolyzed in the midgut. However, increased levels of semiquinone radicals in the midgut were not associated with oxidative stress in midgut tissues. Instead, it appears that tannin consumption was associated with increased metabolic costs, as measured by the decreased efficiency of conversion of digested matter to body mass (ECD). Decreased ECD, in turn, decreased the overall efficiency of conversion of ingested matter to body mass (ECI). Contrary to our hypothesis, L. dispar larvae were able to maintain similar growth rates across all tannin treatment levels, in part, because of compensatory feeding. We conclude that hydrolyzable tannins act as "quantitative defenses" in the sense that high levels appear to be necessary to increase levels of semiquinone radicals in the midguts of caterpillars. However, these putative resistance factors are not sufficient to decrease the performance of tannin-tolerant caterpillars such as L. dispar.


Asunto(s)
Benzoquinonas/toxicidad , Metabolismo Energético/efectos de los fármacos , Mariposas Nocturnas/efectos de los fármacos , Hojas de la Planta/química , Populus/química , Taninos/toxicidad , Análisis de Varianza , Animales , Benzoquinonas/análisis , Sistema Digestivo/metabolismo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Estrés Oxidativo/fisiología , Estadísticas no Paramétricas , Taninos/análisis
14.
J Chem Ecol ; 34(10): 1331-40, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18773241

RESUMEN

Ascorbate is the major water-soluble antioxidant in plants and animals, and it is an essential nutrient for most insect herbivores. Therefore, ascorbate oxidase (AO) has been proposed to function as a plant defense that decreases the availability of ascorbate to insects. This hypothesis was tested by producing transgenic poplar (Populus tremula x Populus alba; Salicaceae) with 14- to 37-fold higher foliar AO activities than control (wild type) leaves and feeding these leaves to Lymantria dispar L. (Lepidoptera: Lymantriidae) caterpillars and Melanoplus sanguinipes (Fabricius) (Orthoptera: Acrididae) grasshoppers. To examine potential mechanisms of activity of AO in these insects, ascorbyl radical and/or ascorbate levels were measured in gut contents. No significant changes in ascorbyl radical or ascorbate levels were found in the midgut contents of L. dispar larvae that ingested the leaves of the AO-overexpressing genotypes compared to the control genotype, and no significant decreases in ascorbate levels were found in the foregut or midgut contents of M. sanguinipes. Treatment of control leaves with commercial AO also produced no changes in the midgut biochemistry of L. dispar larvae, as measured by levels of ascorbyl radicals. Likewise, no increase in oxidative stress was observed in L. dispar that consumed tannin-treated AO-overexpressing leaves compared with tannin-treated control genotype leaves. Performance experiments were carried out on first- and fourth-instar L. dispar larvae on leaf disks and on third instars feeding on intact leaves on trees. In no case was a significant difference found in the contrast between the control and three AO-overexpressing genotypes for relative consumption rate, relative growth rate, or nutritional indices. We conclude that elevated levels of AO in poplar are unlikely to serve as a defense against herbivores such as L. dispar or M. sanguinipes and that the low oxygen levels commonly found in the guts of caterpillars and grasshoppers may limit the activity of ingested AO in these leaf-chewing insects.


Asunto(s)
Ascorbato Oxidasa/metabolismo , Insectos/efectos de los fármacos , Hojas de la Planta/enzimología , Populus/enzimología , Populus/genética , Animales , Ascorbato Oxidasa/genética , Conducta Alimentaria/efectos de los fármacos , Conducta Alimentaria/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Insectos/fisiología , Larva/efectos de los fármacos , Larva/fisiología , Hojas de la Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...